Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Nature ; 627(8002): 116-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355803

RESUMO

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Assuntos
Biodiversidade , Metabolismo Energético , Cadeia Alimentar , Floresta Úmida , Animais , Artrópodes/metabolismo , Bactérias/metabolismo , Aves/metabolismo , Sequestro de Carbono , Fezes , Fungos/metabolismo , Indonésia , Oligoquetos/metabolismo , Compostos Orgânicos/metabolismo , Óleo de Palmeira , Borracha , Solo/química , Clima Tropical
2.
Artigo em Inglês | MEDLINE | ID: mdl-38266530

RESUMO

Triacylglycerol (TAG) is crucial in animal energy storage and membrane biogenesis. The conversion of diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylglycerol acyltransferase enzymes (DGATs), which are encoded by genes belonging to two distinct gene families. Although arthropods are known to possess DGATs activities and utilize the glycerol-3-phosphate pathway and MAG pathway for TAG biosynthesis, the sequence characterization and evolutionary history of DGATs in arthropods remains unclear. This study aimed to comparatively evaluate genomic analyses of DGATs in 13 arthropod species and 14 outgroup species. We found that arthropods lack SOAT2 genes within the DGAT1 family, while DGAT2, MOGAT3, AWAT1, and AWAT2 were absent from in DGAT2 family. Gene structure and phylogenetic analyses revealed that DGAT1 and DGAT2 genes come from different gene families. The expression patterns of these genes were further analyzed in crustaceans, demonstrating the importance of DGAT1 in TAG biosynthesis. Additionally, we identified the DGAT1 gene in Swimming crab (P. trituberculatus) undergoes a mutually exclusive alternative splicing event in the molt stages. Our newly determined DGAT inventory data provide a more complete scenario and insights into the evolutionary dynamics and functional diversification of DGATs in arthropods.


Assuntos
Artrópodes , Diacilglicerol O-Aciltransferase , Animais , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Filogenia , Artrópodes/genética , Artrópodes/metabolismo , Triglicerídeos
3.
J Nat Prod ; 87(1): 85-97, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37957119

RESUMO

The epicuticle of insects is usually coated with a complex mixture of hydrocarbons, primarily straight-chain and methyl-branched alkanes and alkenes. We were interested in whether springtails (Collembola), a sister class of the insects, also use such compounds. We focused here on Vertagopus sarekensis, an abundant Isotomidae species in European high alpine regions, exhibiting coordinated group behavior and migration. This coordination, suggesting chemical communication, made the species interesting for our study on epicuticular hydrocarbons in springtails with different degrees of group behavior. We isolated a single hydrocarbon from its surface, which is the major epicuticular lipid. The structure was deduced by NMR analysis and GC/MS including derivatization. Total synthesis confirmed the structure as cis,cis-3,4,13,14-bismethylene-24-methyldotriacontane (4, sarekensane). The GC/MS analyses of some other cyclopropane hydrocarbons also synthesized showed the close similarity of both mass spectra and gas chromatographic retention indices of alkenes and cyclopropanes. Therefore, analyses of cuticular alkenes must be performed with appropriate derivatization to distinguish these two types of cuticular hydrocarbons. Sarekensane (4) is the first nonterpenoid cuticular hydrocarbon from Collembola that is biosynthesized via the fatty acid pathway, as are insect hydrocarbons, and contains unprecedented cyclopropane rings in the chain, not previously reported from arthropods.


Assuntos
Artrópodes , Animais , Artrópodes/metabolismo , Hidrocarbonetos/análise , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Alcenos/química , Ciclopropanos , Insetos/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Graxos
4.
Biosci Biotechnol Biochem ; 88(2): 138-146, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38017623

RESUMO

Aldoxime (R1R2C=NOH) and nitrile (R-C≡N) are nitrogen-containing compounds that are found in species representing all kingdoms of life. The enzymes discovered from the microbial "aldoxime-nitrile" pathway (aldoxime dehydratase, nitrile hydratase, amidase, and nitrilase) have been thoroughly studied because of their industrial importance. Although plants utilize cytochrome P450 monooxygenases to produce aldoxime and nitrile, many biosynthetic pathways are yet to be studied. Cyanogenic millipedes accumulate various nitrile compounds, such as mandelonitrile. However, no such aldoxime- and nitrile-metabolizing enzymes have been identified in millipedes. Here, I review the exploration of novel enzymes from plants and millipedes with characteristics distinct from those of microbial enzymes, the catalysis of industrially useful reactions, and applications of these enzymes for nitrile compound production.


Assuntos
Artrópodes , Animais , Artrópodes/metabolismo , Nitrilas/metabolismo , Hidroliases , Oximas , Catálise
5.
Insect Biochem Mol Biol ; 164: 104058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072083

RESUMO

Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.


Assuntos
Artrópodes , Quitina Sintase , Animais , Quitina Sintase/metabolismo , Insetos/genética , Insetos/metabolismo , Artrópodes/metabolismo , Invertebrados/metabolismo , Fungos , Quitina/metabolismo , Mamíferos/metabolismo
6.
Insect Biochem Mol Biol ; 160: 103986, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454751

RESUMO

The fat body is responsible for a variety of functions related to energy metabolism in arthropods, by controlling the processes of de novo glucose production (gluconeogenesis) and glycogen metabolism. The rate-limiting factor of gluconeogenesis is the enzyme phosphoenolpyruvate carboxykinase (PEPCK), generally considered to be the first committed step in this pathway. Although the study of PEPCK and gluconeogenesis has been for decades restricted to mammalian models, especially focusing on muscle and liver tissue, current research has demonstrated particularities about the regulation of this enzyme in arthropods, and described new functions. This review will focus on arthropod PEPCK, discuss different aspects to PEPCK regulation and function, its general role in the regulation of gluconeogenesis and other pathways. The text also presents our views on potentially important new directions for research involving this enzyme in a variety of metabolic adaptations (e.g. diapause), discussing enzyme isoforms, roles during arthropod embryogenesis, as well as involvement in vector-pathogen interactions, contributing to a better understanding of insect vectors of diseases and their control.


Assuntos
Artrópodes , Animais , Artrópodes/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Glucose/metabolismo , Homeostase , Mamíferos/metabolismo
7.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283090

RESUMO

Terrestrial arthropods in the Arctic are exposed to highly variable temperatures that frequently reach cold and warm extremes. Yet, ecophysiological studies on arctic insects typically focus on the ability of species to tolerate low temperatures, whereas studies investigating physiological adaptations of species to periodically warm and variable temperatures are few. In this study, we investigated temporal changes in thermal tolerances and the transcriptome in the Greenlandic seed bug Nysius groenlandicus, collected in the field across different times and temperatures in Southern Greenland. We found that plastic changes in heat and cold tolerances occurred rapidly (within hours) and at a daily scale in the field, and that these changes are correlated with diurnal temperature variation. Using RNA sequencing, we provide molecular underpinnings of the rapid adjustments in thermal tolerance across ambient field temperatures and in the laboratory. We show that transcriptional responses are sensitive to daily temperature changes, and days characterized by high temperature variation induced markedly different expression patterns than thermally stable days. Further, genes associated with laboratory-induced heat responses, including expression of heat shock proteins and vitellogenins, were shared across laboratory and field experiments, but induced at time points associated with lower temperatures in the field. Cold stress responses were not manifested at the transcriptomic level.


Assuntos
Aclimatação , Artrópodes , Animais , Aclimatação/fisiologia , Artrópodes/metabolismo , Temperatura Baixa , Temperatura Alta , Insetos/genética , Temperatura , Transcriptoma
8.
PLoS One ; 18(6): e0287294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347755

RESUMO

Hemocyanins are multimeric oxygen transport proteins present in the blood of arthropods and molluscs, containing up to 8 oxygen-binding functional units per monomer. In molluscs, hemocyanins are assembled in decamer 'building blocks' formed of 5 dimer 'plates', routinely forming didecamer or higher-order assemblies with d5 or c5 symmetry. Here we describe the cryoEM structures of the didecamer (20-mer) and tridecamer (30-mer) forms of a novel hemocyanin from the slipper limpet Crepidula fornicata (SLH) at 7.0 and 4.7 Å resolution respectively. We show that two decamers assemble in a 'tail-tail' configuration, forming a partially capped cylinder, with an additional decamer adding on in 'head-tail' configuration to make the tridecamer. Analysis of SLH samples shows substantial heterogeneity, suggesting the presence of many higher-order multimers including tetra- and pentadecamers, formed by successive addition of decamers in head-tail configuration. Retrieval of sequence data for a full-length isoform of SLH enabled the use of Alphafold to produce a molecular model of SLH, which indicated the formation of dimer slabs with high similarity to those found in keyhole limpet hemocyanin. The fit of the molecular model to the cryoEM density was excellent, showing an overall structure where the final two functional units of the subunit (FU-g and FU-h) form the partial cap at one end of the decamer, and permitting analysis of the subunit interfaces governing the assembly of tail-tail and head-tail decamer interactions as well as potential sites for N-glycosylation. Our work contributes to the understanding of higher-order oligomer formation in molluscan hemocyanins and demonstrates the utility of Alphafold for building accurate structural models of large oligomeric proteins.


Assuntos
Artrópodes , Gastrópodes , Animais , Hemocianinas/metabolismo , Microscopia Crioeletrônica , Moluscos/química , Modelos Moleculares , Artrópodes/metabolismo , Gastrópodes/metabolismo , Polímeros
9.
Sci Rep ; 13(1): 8880, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264058

RESUMO

Antifreeze proteins (AFPs) bind to ice crystals to prevent organisms from freezing. A diversity of AFP folds has been found in fish and insects, including alpha helices, globular proteins, and several different beta solenoids. But the variety of AFPs in flightless arthropods, like Collembola, has not yet been adequately assessed. Here, antifreeze activity was shown to be present in 18 of the 22 species of Collembola from cold or temperate zones. Several methods were used to characterize these AFPs, including isolation by ice affinity purification, MALDI mass spectrometry, amino acid composition analysis, tandem mass spectrometry sequencing, transcriptome sequencing, and bioinformatic investigations of sequence databases. All of these AFPs had a high glycine content and were predicted to have the same polyproline type II helical bundle fold, a fold unique to Collembola. These Hexapods arose in the Ordovician Period with the two orders known to produce AFPs diverging around 400 million years ago during the Andean-Saharan Ice Age. Therefore, it is likely that the AFP arose then and persisted in many lineages through the following two ice ages and intervening warm periods, unlike the AFPs of fish which arose independently during the Cenozoic Ice Age beginning ~ 30 million years ago.


Assuntos
Proteínas Anticongelantes Tipo II , Artrópodes , Animais , alfa-Fetoproteínas , Artrópodes/genética , Artrópodes/metabolismo , Proteínas Anticongelantes/química , Peixes/genética , Peixes/metabolismo , Insetos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672186

RESUMO

Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture.


Assuntos
Artrópodes , Compostos Orgânicos Voláteis , Humanos , Animais , Feminino , Artrópodes/metabolismo , Herbivoria , Compostos Orgânicos Voláteis/metabolismo , Insetos/metabolismo , Agricultura , Plantas/metabolismo
11.
Dev Dyn ; 252(1): 172-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112412

RESUMO

BACKGROUND: Development of the nervous system and the correct connection of nerve cells require coordinated axonal pathfinding through an extracellular matrix. Outgrowing axons exhibit directional growth toward or away from external guidance cues such as Netrin. Guidance cues can be detected by growth cones that are located at the end of growing axons through membrane-bound receptors such as Uncoordianted-5 and Frazzled. Binding of Netrin causes reformation of the cytoskeleton and growth of the axon toward (or away from) the source of Netrin production. RESULTS: Here, we investigate the embryonic mRNA expression patterns of netrin genes and their potential receptors, uncoordinated-5 and frazzled in arthropod species that cover all main branches of Arthropoda, that is, Pancrustacea, Myriapoda, and Chelicerata. We also studied the expression patterns in a closely related outgroup species, the onychophoran Euperipatoides kanangrensis, and provide data on expression profiles of these genes in larval tissues of the fly Drosophila melanogaster including the brain and the imaginal disks. CONCLUSION: Our data reveal conserved and diverged aspects of neuronal guidance in Drosophila with respect to the other investigated species and suggest a conserved function in nervous system patterning of the developing appendages.


Assuntos
Artrópodes , Proteínas de Drosophila , Animais , Netrinas/genética , Netrinas/metabolismo , Drosophila melanogaster/genética , Artrópodes/genética , Artrópodes/metabolismo , Orientação de Axônios , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Axônios/metabolismo , Receptores de Netrina/metabolismo
12.
Insect Biochem Mol Biol ; 150: 103859, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265807

RESUMO

Cuticular protein (CP) plays an essential role in the construction and function of exoskeleton in arthropods. CPR family, CP with Rebers and Riddiford (R&R) Consensus, is the largest CP family in insects, but it lacks systematic research in non-insect arthropods. In this study, we explored CPRs in the wolf spider, Pardosa pseudoannulata, a predator to many insect pests. We totally identified 152 CPRs in P. pseudoannulata genome, which were divided into two subgroups based on R&R Consensus sequences, with 12 CPRs in RR-1 and 140 in RR-2. All RR-2 members presented a novel Consensus with 34 amino acids, G-x(8)-G-x(6)-Y-x-A-x(3)-G-x(7)-N-E-x-G, which was a common characteristic for RR-2 CPRs in chelicerates. Transcriptome data was used to document the expression patterns of CPR genes in different tissues and ecdysis processes. The specific expressions were found for part CPR genes, such as five RR-2 genes that were specifically expressed in male genital bulbs and eleven RR-1 genes that were highly expressed in the integument. Due to the limited number and integument-specific expression of RR-1 genes, we further analyzed their responses to different environmental stresses at the transcriptional level. Except for PapsCPR11, ten RR-1 genes responded to at least one environmental stress, among with the expression of PapsCPR12 was significantly changed by three stresses (dryness, low temperature and imidacloprid treatments). Silencing PapsCPR12 increased the tolerance of P. pseudoannulata to imidacloprid. Overall, the results presented novel Consensus characteristics of CPRs in P. pseudoannulata, which was helpful for the identification and evolution analysis of CPRs in non-insect arthropods.


Assuntos
Artrópodes , Aranhas , Animais , Masculino , Artrópodes/metabolismo , Insetos , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Aranhas/genética , Aranhas/metabolismo
13.
Sci Rep ; 12(1): 14810, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045215

RESUMO

A longstanding question in evolutionary biology is how natural selection and environmental pressures shape the mitochondrial genomic architectures of organisms. Mitochondria play a pivotal role in cellular respiration and aerobic metabolism, making their genomes functionally highly constrained. Evaluating selective pressures on mitochondrial genes can provide functional and ecological insights into the evolution of organisms. Collembola (springtails) are an ancient hexapod group that includes the oldest terrestrial arthropods in the fossil record, and that are closely associated with soil environments. Of interest is the diversity of habitat stratification preferences (life forms) exhibited by different species within the group. To understand whether signals of positive selection are linked to the evolution of life forms, we analysed 32 published Collembola mitogenomes in a phylomitogenomic framework. We found no evidence that signatures of selection are correlated with the evolution of novel life forms, but rather that mutations have accumulated as a function of time. Our results highlight the importance of nuclear-mitochondrial interactions in the evolution of collembolan life forms and that mitochondrial genomic data should be interpreted with caution, as complex selection signals may complicate evolutionary inferences.


Assuntos
Artrópodes , Genoma Mitocondrial , Animais , Artrópodes/genética , Artrópodes/metabolismo , Evolução Molecular , Fósseis , Genes Mitocondriais , Insetos/genética , Filogenia
14.
PLoS One ; 17(7): e0270790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802758

RESUMO

Fox genes represent an evolutionary old class of transcription factor encoding genes that evolved in the last common ancestor of fungi and animals. They represent key-components of multiple gene regulatory networks (GRNs) that are essential for embryonic development. Most of our knowledge about the function of Fox genes comes from vertebrate research, and for arthropods the only comprehensive gene expression analysis is that of the fly Drosophila melanogaster. For other arthropods, only selected Fox genes have been investigated. In this study, we provide the first comprehensive gene expression analysis of arthropod Fox genes including representative species of all main groups of arthropods, Pancrustacea, Myriapoda and Chelicerata. We also provide the first comprehensive analysis of Fox gene expression in an onychophoran species. Our data show that many of the Fox genes likely retained their function during panarthropod evolution highlighting their importance in development. Comparison with published data from other groups of animals shows that this high degree of evolutionary conservation often dates back beyond the last common ancestor of Panarthropoda.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Artrópodes/metabolismo , Drosophila melanogaster/genética , Expressão Gênica , Redes Reguladoras de Genes , Filogenia
15.
Gigascience ; 112022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333301

RESUMO

BACKGROUND: A central challenge of DNA gut content analysis is to identify prey in a highly degraded DNA community. In this study, we evaluated prey detection using metabarcoding and a method of mapping unassembled shotgun reads (Lazaro). RESULTS: In a mock prey community, metabarcoding did not detect any prey, probably owing to primer choice and/or preferential predator DNA amplification, while Lazaro detected prey with accuracy 43-71%. Gut content analysis of field-collected arthropod epigeal predators (3 ants, 1 dermapteran, and 1 carabid) from agricultural habitats in Brazil (27 samples, 46-273 individuals per sample) revealed that 64% of the prey species detections by either method were not confirmed by melting curve analysis and 87% of the true prey were detected in common. We hypothesized that Lazaro would detect fewer true- and false-positive and more false-negative prey with greater taxonomic resolution than metabarcoding but found that the methods were similar in sensitivity, specificity, false discovery rate, false omission rate, and accuracy. There was a positive correlation between the relative prey DNA concentration in the samples and the number of prey reads detected by Lazaro, while this was inconsistent for metabarcoding. CONCLUSIONS: Metabarcoding and Lazaro had similar, but partially complementary, detection of prey in arthropod predator guts. However, while Lazaro was almost 2× more expensive, the number of reads was related to the amount of prey DNA, suggesting that Lazaro may provide quantitative prey information while metabarcoding did not.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Artrópodes/metabolismo , Brasil , DNA/metabolismo , Ecossistema , Humanos , Análise de Sequência de DNA
16.
Pestic Biochem Physiol ; 181: 105005, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082029

RESUMO

The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.


Assuntos
Artrópodes , Inseticidas , Animais , Artrópodes/metabolismo , Abelhas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica , Inseticidas/toxicidade , Filogenia , Xenobióticos/toxicidade
17.
Dev Genes Evol ; 232(1): 27-37, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35038005

RESUMO

In the arthropod model species Drosophila melanogaster, a dipteran fly, segmentation of the anterior-posterior body axis is under control of a hierarchic gene cascade. Segmental boundaries that form morphological grooves are established posteriorly within the segmental expression domain of the segment-polarity gene (SPG) engrailed (en). More important for the development of the fly, however, are the parasegmental boundaries that are established at the interface of en expressing cells and anteriorly adjacent wingless (wg) expressing cells. In Drosophila, both segmental and transient parasegmental grooves form. The latter are positioned anterior to the expression of en. Although the function of the SPGs in establishing and maintaining segmental and parasegmental boundaries is highly conserved among arthropods, parasegmental grooves have only been reported for Drosophila, and a spider (Cupiennius salei). Here, we present new data on en expression, and re-evaluate published data, from four distantly related spiders, including Cupiennius, and a distantly related chelicerate, the harvestman Phalangium opilio. Gene expression analysis of en genes in these animals does not corroborate the presence of parasegmental grooves. Consequently, our data question the general presence of parasegmental grooves in arthropods.


Assuntos
Artrópodes , Proteínas de Drosophila , Aranhas , Animais , Artrópodes/genética , Artrópodes/metabolismo , Padronização Corporal/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Aranhas/genética , Aranhas/metabolismo
18.
FEBS J ; 289(7): 1827-1841, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34799995

RESUMO

Protein engineering approaches have been proposed to improve the inhibitory properties of plant cystatins against herbivorous arthropod digestive proteases, generally involving the site-directed mutagenesis of functionally relevant amino acids or the selection of improved inhibitor variants by phage display approaches. Here, we propose a novel approach where the function-related structural elements of a cystatin are substituted by the corresponding elements of an alternative cystatin. Inhibitory assays were first performed with 20 representative plant cystatins and model Cys proteases, including arthropod proteases, to appreciate the extent of functional variability among the plant cystatin family. The most, and less, potent of these cystatins were then used as 'donors' of structural elements to create hybrids of tomato cystatin SlCYS8 used as a model 'recipient' inhibitor. In brief, inhibitory activities against Cys proteases strongly differed from one plant cystatin to another, with Ki (papain) values diverging by more than 30-fold and inhibitory rates against arthropod proteases varying by up to 50-fold depending on the enzymes assessed. In line with theoretical assumptions from docking models generated for different Cys protease-cystatin combinations, structural element substitutions had a strong impact on the activity of recipient cystatin SlCYS8, positive or negative depending on the basic inhibitory potency of the donor cystatin. Our data confirm the wide variety of cystatin inhibitory profiles among plant taxa. They also demonstrate the usefulness of these proteins as a pool of discrete structural elements for the design of cystatin variants with improved potency against herbivorous pest digestive Cys proteases.


Assuntos
Artrópodes , Besouros , Cistatinas , Animais , Artrópodes/metabolismo , Besouros/metabolismo , Cistatinas/genética , Cistatinas/metabolismo , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Peptídeo Hidrolases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Proc Biol Sci ; 288(1965): 20211808, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34933597

RESUMO

Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.


Assuntos
Artrópodes , Asas de Animais , Animais , Artrópodes/genética , Artrópodes/metabolismo , Evolução Biológica , Redes Reguladoras de Genes , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/genética
20.
PLoS One ; 16(11): e0260070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807930

RESUMO

Dehydration can have negative effects on animal physiological performance, growth, reproduction, and survival, and most animals seek to minimize these effects by reducing water losses or seeking water sources. Much-but not all-of the research on animal water balance comes from dryland ecosystems. However, animals inhabiting mesic regions may also experience desiccating conditions, for example within urban heat islands or during heatwaves and droughts. Here we examined how spatial variation in impervious surface and spatial and temporal variation in microclimate impact water demand behavior of terrestrial arthropods and mollusks in three areas of mesic Northwest Ohio, with analysis of taxa that exhibited the greatest water demand behavior. Water demand behavior was measured as the frequency that individuals were observed at an artificial water source (a moistened pouch), relative to the frequency at a control (a dry pouch). Overall, terrestrial arthropods and mollusks were found about twice as often at the water source than at the control (equivalent to 86 more observations on the wet pouch than on dry at each site, on average), with ants accounting for over 50% of the overall response in urban areas. Daily fluctuations in vapor pressure deficit (VPD) best predicted daily variation in water demand behavior, with increased demand at higher VPD. Mean VPD was generally highest near urbanized areas, but effects of VPD on water demand behavior were generally lower in urbanized areas (possibly related to reductions in overall abundance reducing the potential response). On certain days, VPD was high in natural areas and greenspaces, and this coincided with the highest arthropod water demand behavior observed. Our results suggest that terrestrial arthropod communities do experience periods of water demand within mesic regions, including in greenspaces outside cities, where they appear to respond strongly to short periods of dry conditions-an observation with potential relevance for understanding the effects of climate change.


Assuntos
Comportamento Apetitivo/fisiologia , Artrópodes/metabolismo , Moluscos/metabolismo , Animais , Formigas , Mudança Climática , Secas , Ecossistema , Microclima , Ohio , Pressão de Vapor , Água , Recursos Hídricos , Equilíbrio Hidroeletrolítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...